HOME      ABOUT      ARTICLES      CONTACT      LINKS      CONVERTER
CYCLOSTORM
Updated: Tue 22 Sep 2020 18:12 GMT
CLICK ON MAP TO ACCESS STORM DETAILS
Situation Map
TEDDY (Atlantic Basin)
BETA (Atlantic Basin)
DOLPHIN (West Pacific)
LOWELL (East Pacific)
Hurricane TEDDY Tropical Depression BETA Tropical Storm DOLPHIN Tropical Storm LOWELL Situation Map
NHC Forecast Track (Hurricane TEDDY)
Hurricane TEDDY Forecast Track (National Hurricane Center)
Hurricane TEDDY Storm-Centered Infrared
Hurricane TEDDY Storm-Centered Enhanced Infrared
Hurricane TEDDY Storm-Centered Visible

Summary for Hurricane Teddy (AT5/AL202020)

...EXTREMELY LARGE TEDDY TO BRING DESTRUCTIVE WAVES, HEAVY RAIN AND STRONG WINDS TO PORTIONS OF NOVA SCOTIA TODAY THROUGH WEDNESDAY... As of 2:00 PM AST Tue Sep 22 the center of Teddy was located near 40.3, -64.1 with movement NNW at 16 mph. The minimum central pressure was 956 mb with maximum sustained winds of about 100 mph.

Hurricane Teddy Public Advisory Number 41A

...EXTREMELY LARGE TEDDY TO BRING DESTRUCTIVE WAVES, HEAVY RAIN AND STRONG WINDS TO PORTIONS OF NOVA SCOTIA TODAY THROUGH WEDNESDAY...
Location: 40.3°N 64.1°W
Max sustained: 100 mph
Moving: NNW at 16 mph
Min pressure: 956 mb

Issued at 200 PM AST Tue Sep 22 2020

Hurricane Teddy Forecast Advisory Number 41

Issued at 1500 UTC TUE SEP 22 2020

Hurricane Teddy Forecast Discussion Number 41

Issued at 1100 AM AST Tue Sep 22 2020

Hurricane Teddy Wind Speed Probabilities Number 41

Issued at 1500 UTC TUE SEP 22 2020

Hurricane Teddy Graphics

Hurricane Teddy 5-Day Uncertainty Track Image
5-Day Uncertainty Track last updated Tue, 22 Sep 2020 17:46:08 GMT

Hurricane Teddy 34-Knot Wind Speed Probabilities
Wind Speed Probabilities last updated Tue, 22 Sep 2020 15:32:49 GMT

Hurricane Teddy 5-Day Track, Uncertainty Cone, Warnings (.shp)

GIS Data last updated Tue, 22 Sep 2020 17:47:50 GMT

Hurricane Teddy Best Track Information (.shp)

GIS Data last updated Tue, 22 Sep 2020 17:47:50 GMT

Hurricane Teddy Best Track Information (.kmz)

GIS Data last updated Tue, 22 Sep 2020 17:47:50 GMT

Hurricane Teddy Forecast Information (.shp)

GIS Data last updated Tue, 22 Sep 2020 17:47:50 GMT

Hurricane Teddy Information by ATCF XML Prototype

Issued at Tue, 22 Sep 2020 17:44:23 GMT. This is only a prototype and the file format may change without notice.
SpaghettiHurricane TEDDY Spaghetti Models (SFWMD)
SpaghettiHurricane TEDDY Spaghetti Models (UWM)

Radar

Satellite Imagery

Satellite Animations

NHC Forecast Track (Tropical Depression BETA)
Tropical Depression BETA Forecast Track (National Hurricane Center)
Tropical Depression BETA Storm-Centered Infrared
Tropical Depression BETA Storm-Centered Enhanced Infrared
Tropical Depression BETA Storm-Centered Visible

Summary for Tropical Depression Beta (AT2/AL222020)

...BETA WEAKENS TO A TROPICAL DEPRESSION OVER TEXAS... ...HEAVY RAINS EXPECTED TO CONTINUE OVER PORTIONS OF THE MIDDLE AND UPPER TEXAS COAST... As of 10:00 AM CDT Tue Sep 22 the center of Beta was located near 28.9, -96.7 with movement NE at 2 mph. The minimum central pressure was 1005 mb with maximum sustained winds of about 35 mph.

Tropical Depression Beta Public Advisory Number 20

...BETA WEAKENS TO A TROPICAL DEPRESSION OVER TEXAS... ...HEAVY RAINS EXPECTED TO CONTINUE OVER PORTIONS OF THE MIDDLE AND UPPER TEXAS COAST...
Location: 28.9°N 96.7°W
Max sustained: 35 mph
Moving: NE at 2 mph
Min pressure: 1005 mb

Issued at 1000 AM CDT Tue Sep 22 2020

Spanish Language Public Advisory

Issued at 1000 AM CDT martes 22 de septiembre de 2020

Tropical Depression Beta Forecast Advisory Number 20

Issued at 1500 UTC TUE SEP 22 2020

Tropical Depression Beta Forecast Discussion Number 20

Issued at 1000 AM CDT Tue Sep 22 2020

Tropical Depression Beta Wind Speed Probabilities Number 20

Issued at 1500 UTC TUE SEP 22 2020

Tropical Depression Beta Graphics

Tropical Depression Beta 5-Day Uncertainty Track Image
5-Day Uncertainty Track last updated Tue, 22 Sep 2020 15:05:47 GMT

Tropical Depression Beta 34-Knot Wind Speed Probabilities
Wind Speed Probabilities last updated Tue, 22 Sep 2020 15:40:19 GMT

Local Statement for Corpus Christi, TX

Issued at 1013 AM CDT Tue Sep 22 2020

Local Statement for Austin / San Antonio, TX

Issued at 1016 AM CDT Tue Sep 22 2020

Local Statement for Lake Charles, LA

Issued at 1022 AM CDT Tue Sep 22 2020

Local Statement for Houston / Galveston, TX

Issued at 1101 AM CDT Tue Sep 22 2020

Tropical Depression Beta 5-Day Track, Uncertainty Cone, Warnings (.shp)

GIS Data last updated Tue, 22 Sep 2020 15:06:28 GMT

Tropical Depression Beta Best Track Information (.shp)

GIS Data last updated Tue, 22 Sep 2020 15:06:30 GMT

Tropical Depression Beta Best Track Information (.kmz)

GIS Data last updated Tue, 22 Sep 2020 15:06:30 GMT

Tropical Depression Beta Forecast Information (.shp)

GIS Data last updated Tue, 22 Sep 2020 15:06:30 GMT

Tropical Depression Beta Information by ATCF XML Prototype

Issued at Tue, 22 Sep 2020 14:58:21 GMT. This is only a prototype and the file format may change without notice.
SpaghettiTropical Depression BETA Spaghetti Models (SFWMD)
SpaghettiTropical Depression BETA Spaghetti Models (UWM)

Radar

Satellite Imagery

Satellite Animations

Tropical Storm DOLPHIN Forecast Graphic
Tropical Storm DOLPHIN Forecast Track (Joint Typhoon Warning Center)
Tropical Storm HIGOS Storm-Centered Infrared
Tropical Storm HIGOS Storm-Centered Enhanced Infrared
Tropical Storm HIGOS Storm-Centered Visible
Tropical Storm DOLPHIN Warning Text (JTWC)
WTPN31 PGTW 221500
MSGID/GENADMIN/JOINT TYPHOON WRNCEN PEARL HARBOR HI//
SUBJ/TROPICAL STORM 14W (DOLPHIN) WARNING NR 009//
RMKS/
1. TROPICAL STORM 14W (DOLPHIN) WARNING NR 009    
   01 ACTIVE TROPICAL CYCLONE IN NORTHWESTPAC
   MAX SUSTAINED WINDS BASED ON ONE-MINUTE AVERAGE
   WIND RADII VALID OVER OPEN WATER ONLY
    ---
   WARNING POSITION:
   221200Z --- NEAR 29.1N 135.9E
     MOVEMENT PAST SIX HOURS - 015 DEGREES AT 11 KTS
     POSITION ACCURATE TO WITHIN 030 NM
     POSITION BASED ON CENTER LOCATED BY SATELLITE
   PRESENT WIND DISTRIBUTION:
   MAX SUSTAINED WINDS - 055 KT, GUSTS 070 KT
   WIND RADII VALID OVER OPEN WATER ONLY
   BECOMING SUBTROPICAL
   RADIUS OF 050 KT WINDS - 060 NM NORTHEAST QUADRANT
                            040 NM SOUTHEAST QUADRANT
                            030 NM SOUTHWEST QUADRANT
                            035 NM NORTHWEST QUADRANT
   RADIUS OF 034 KT WINDS - 115 NM NORTHEAST QUADRANT
                            090 NM SOUTHEAST QUADRANT
                            070 NM SOUTHWEST QUADRANT
                            080 NM NORTHWEST QUADRANT
   REPEAT POSIT: 29.1N 135.9E
    ---
   FORECASTS:
   12 HRS, VALID AT:
   230000Z --- 30.9N 136.6E
   MAX SUSTAINED WINDS - 055 KT, GUSTS 070 KT
   WIND RADII VALID OVER OPEN WATER ONLY
   SUBTROPICAL
   RADIUS OF 050 KT WINDS - 040 NM NORTHEAST QUADRANT
                            020 NM SOUTHEAST QUADRANT
                            010 NM SOUTHWEST QUADRANT
                            020 NM NORTHWEST QUADRANT
   RADIUS OF 034 KT WINDS - 220 NM NORTHEAST QUADRANT
                            100 NM SOUTHEAST QUADRANT
                            080 NM SOUTHWEST QUADRANT
                            140 NM NORTHWEST QUADRANT
   VECTOR TO 24 HR POSIT: 025 DEG/ 11 KTS
    ---
   24 HRS, VALID AT:
   231200Z --- 32.9N 137.6E
   MAX SUSTAINED WINDS - 050 KT, GUSTS 065 KT
   WIND RADII VALID OVER OPEN WATER ONLY
   BECOMING EXTRATROPICAL
   RADIUS OF 050 KT WINDS - 060 NM NORTHEAST QUADRANT
                            020 NM SOUTHEAST QUADRANT
                            030 NM SOUTHWEST QUADRANT
                            030 NM NORTHWEST QUADRANT
   RADIUS OF 034 KT WINDS - 190 NM NORTHEAST QUADRANT
                            100 NM SOUTHEAST QUADRANT
                            090 NM SOUTHWEST QUADRANT
                            120 NM NORTHWEST QUADRANT
   VECTOR TO 36 HR POSIT: 035 DEG/ 12 KTS
    ---
   36 HRS, VALID AT:
   240000Z --- 34.8N 139.2E
   MAX SUSTAINED WINDS - 050 KT, GUSTS 065 KT
   WIND RADII VALID OVER OPEN WATER ONLY
   EXTRATROPICAL
   RADIUS OF 050 KT WINDS - 050 NM NORTHEAST QUADRANT
                            020 NM SOUTHEAST QUADRANT
                            030 NM SOUTHWEST QUADRANT
                            050 NM NORTHWEST QUADRANT
   RADIUS OF 034 KT WINDS - 210 NM NORTHEAST QUADRANT
                            100 NM SOUTHEAST QUADRANT
                            080 NM SOUTHWEST QUADRANT
                            150 NM NORTHWEST QUADRANT
   VECTOR TO 48 HR POSIT: 035 DEG/ 15 KTS
    ---
   EXTENDED OUTLOOK:
   48 HRS, VALID AT:
   241200Z --- 37.2N 141.4E
   MAX SUSTAINED WINDS - 050 KT, GUSTS 065 KT
   WIND RADII VALID OVER OPEN WATER ONLY
   EXTRATROPICAL
   RADIUS OF 050 KT WINDS - 040 NM NORTHEAST QUADRANT
                            020 NM SOUTHEAST QUADRANT
                            010 NM SOUTHWEST QUADRANT
                            040 NM NORTHWEST QUADRANT
   RADIUS OF 034 KT WINDS - 230 NM NORTHEAST QUADRANT
                            090 NM SOUTHEAST QUADRANT
                            080 NM SOUTHWEST QUADRANT
                            180 NM NORTHWEST QUADRANT
   VECTOR TO 72 HR POSIT: 030 DEG/ 15 KTS
    ---
   72 HRS, VALID AT:
   251200Z --- 42.1N 145.5E
   MAX SUSTAINED WINDS - 045 KT, GUSTS 055 KT
   WIND RADII VALID OVER OPEN WATER ONLY
   EXTRATROPICAL
   RADIUS OF 034 KT WINDS - 300 NM NORTHEAST QUADRANT
                            120 NM SOUTHEAST QUADRANT
                            140 NM SOUTHWEST QUADRANT
                            200 NM NORTHWEST QUADRANT
    ---
REMARKS:
221500Z POSITION NEAR 29.5N 136.1E.
22SEP20. TROPICAL STORM 14W (DOLPHIN), LOCATED APPROXIMATELY 419
NM SOUTH-SOUTHWEST OF YOKOSUKA, JAPAN, HAS TRACKED NORTH-
NORTHEASTWARD AT 11 KNOTS OVER THE PAST SIX HOURS.
MAXIMUM SIGNIFICANT WAVE HEIGHT AT 221200Z IS 21 FEET. NEXT
WARNINGS AT 222100Z, 230300Z, 230900Z AND 231500Z.//
NNNN
Tropical Storm DOLPHIN Prognostic Reasoning (JTWC)
WDPN31 PGTW 221500
MSGID/GENADMIN/JOINT TYPHOON WRNCEN PEARL HARBOR HI//
SUBJ/PROGNOSTIC REASONING FOR TROPICAL STORM 14W (DOLPHIN) 
WARNING NR 009//
RMKS/
1. FOR METEOROLOGISTS.
2. 6 HOUR SUMMARY AND ANALYSIS.
   TROPICAL STORM (TS) 14W (DOLPHIN), LOCATED APPROXIMATELY 419
NM SOUTH-SOUTHWEST OF YOKOSUKA, JAPAN, HAS TRACKED NORTH-
NORTHEASTWARD AT 11 KNOTS OVER THE PAST SIX HOURS. ANIMATED ENHANCED 
INFRARED SATELLITE IMAGERY DEPICTS PERSISTENT DEEP CONVECTION 
OBSCURING THE LOW-LEVEL CIRCULATION CENTER (LLCC). A 221335Z GMI 
37GHZ MICROWAVE IMAGE INDICATES CONVECTIVE BANDING WRAPPING INTO A 
SMALL MICROWAVE EYE FEATURE, WHICH SUPPORTS THE INITIAL POSITION 
WITH GOOD CONFIDENCE. THE GMI 89GHZ IMAGE INDICATES THAT THE UPPER-
LEVEL CIRCULATION CENTER IS TILTED ABOUT 30NM EAST OF THE LLCC DUE 
TO INCREASING WESTERLY VERTICAL WIND SHEAR (VWS). THE INITIAL 
INTENSITY IS ASSESSED AT 55 KNOTS BASED ON A BLEND OF PGTW/RJTD 
DVORAK CURRENT INTENSITY ESTIMATES OF 3.5 (55 KNOTS), A 220844Z 
SATCON ESTIMATE OF 51 KNOTS AND A 220823Z SMAP ESTIMATE OF 57 KNOTS 
(61 KNOTS 1-MINUTE AVERAGE). UPPER-LEVEL ANALYSIS REVEALS A 
MARGINALLY-FAVORABLE ENVIRONMENT WITH MODERATE (22 KNOTS) VWS OFFSET 
BY ROBUST POLEWARD OUTFLOW INTO THE STRONG WESTERLIES TO THE NORTH. 
ANIMATED WATER VAPOR IMAGERY INDICATES INCREASING PRESSURE OVER THE 
WESTERN SEMICIRCLE. TS 14W IS TRACKING POLEWARD WITHIN A BROAD COL 
REGION ALONG THE WESTERN PERIPHERY OF THE SUBTROPICAL RIDGE (STR).
3. FORECAST REASONING.
   A. NO CHANGE TO THE FORECAST PHILOSOPHY SINCE THE PREVIOUS
PROGNOSTIC REASONING MESSAGE.
   B. TS 14W IS FORECAST TO TRACK NORTH-NORTHEASTWARD TO 
NORTHEASTWARD THROUGH TAU 48 AS IT ROUNDS THE STR AXIS AND TRACKS 
OVER THE KANTO PLAIN REGION OF HONSHU. NUMERICAL MODEL GUIDANCE AND 
THE 22/00Z ECMWF ENSEMBLE SOLUTIONS REMAIN IN GOOD AGREEMENT THROUGH 
TAU 48 WITH A 85NM SPREAD IN SOLUTIONS AT TAU 48. THE SYSTEM IS 
EXPECTED TO INTERACT WITH SUBTROPICAL WESTERLIES THROUGH TAU 12 WITH 
MODERATE BAROCLINICITY, WHICH WILL LEAD TO A SUBTROPICAL TRANSITION 
BY TAU 12. AFTER TAU 12, TS 14W WILL QUICKLY GAIN FRONTAL 
CHARACTERISTICS AS IT APPROACHES A DEEP MIDLATITUDE TROUGH AND JET-
STRENGTH WINDS OVER CENTRAL HONSHU. VWS IS EXPECTED TO INCREASE 
SIGNIFICANTLY BY TAU 36 TO 40-50 KNOTS WITH A CLEAR FRONTAL 
STRUCTURE EVIDENT IN THE 1000-500MB THICKNESS FIELDS. THE SYSTEM 
SHOULD COMPLETE EXTRA-TROPICAL TRANSITION BY TAU 36 AND WILL 
TRACK OVER THE KANTO PLAIN AS A STORM-FORCE EXTRA-TROPICAL LOW. 
AFTER TAU 36, THE EXTRA-TROPICAL LOW WILL ACCELERATE NORTHEASTWARD 
PRODUCING GALE-FORCE WINDS OVER NORTHERN HONSHU. OVERALL, THERE IS 
HIGH CONFIDENCE IN THE JTWC FORECAST TRACK, WHICH IS POSITIONED WEST 
OF THE MULTI-MODEL CONSENSUS NEAR THE ECMWF SOLUTION.//
NNNN
Tropical Storm DOLPHIN JMV 3.0 Data (JTWC)
WTPN51 PGTW 221500    
WARNING    ATCG MIL 14W NWP 200922141956
2020092212 14W DOLPHIN    009  01 015 11 SATL 030
T000 291N 1359E 055 R050 060 NE QD 040 SE QD 030 SW QD 035 NW QD R034 115 NE QD 090 SE QD 070 SW QD 080 NW QD 
T012 309N 1366E 055 R050 040 NE QD 020 SE QD 010 SW QD 020 NW QD R034 220 NE QD 100 SE QD 080 SW QD 140 NW QD 
T024 329N 1376E 050 R050 060 NE QD 020 SE QD 030 SW QD 030 NW QD R034 190 NE QD 100 SE QD 090 SW QD 120 NW QD 
T036 348N 1392E 050 R050 050 NE QD 020 SE QD 030 SW QD 050 NW QD R034 210 NE QD 100 SE QD 080 SW QD 150 NW QD 
T048 372N 1414E 050 R050 040 NE QD 020 SE QD 010 SW QD 040 NW QD R034 230 NE QD 090 SE QD 080 SW QD 180 NW QD 
T072 421N 1455E 045 R034 300 NE QD 120 SE QD 140 SW QD 200 NW QD 
AMP 000HR BECOMING EXTRATROPICAL
    012HR EXTRATROPICAL
    024HR BECOMING EXTRATROPICAL
    036HR EXTRATROPICAL
    048HR EXTRATROPICAL
    072HR EXTRATROPICAL
SUBJ:  TROPICAL STORM 14W (DOLPHIN) WARNING NR 009    
1. TROPICAL STORM 14W (DOLPHIN) WARNING NR 009    
   01 ACTIVE TROPICAL CYCLONE IN NORTHWESTPAC
   MAX SUSTAINED WINDS BASED ON ONE-MINUTE AVERAGE
   WIND RADII VALID OVER OPEN WATER ONLY
    ---
   WARNING POSITION:
   221200Z --- NEAR 29.1N 135.9E
     MOVEMENT PAST SIX HOURS - 015 DEGREES AT 11 KTS
     POSITION ACCURATE TO WITHIN 030 NM
     POSITION BASED ON CENTER LOCATED BY SATELLITE
   PRESENT WIND DISTRIBUTION:
   MAX SUSTAINED WINDS - 055 KT, GUSTS 070 KT
   WIND RADII VALID OVER OPEN WATER ONLY
   BECOMING SUBTROPICAL
   RADIUS OF 050 KT WINDS - 060 NM NORTHEAST QUADRANT
                            040 NM SOUTHEAST QUADRANT
                            030 NM SOUTHWEST QUADRANT
                            035 NM NORTHWEST QUADRANT
   RADIUS OF 034 KT WINDS - 115 NM NORTHEAST QUADRANT
                            090 NM SOUTHEAST QUADRANT
                            070 NM SOUTHWEST QUADRANT
                            080 NM NORTHWEST QUADRANT
   REPEAT POSIT: 29.1N 135.9E
    ---
   FORECASTS:
   12 HRS, VALID AT:
   230000Z --- 30.9N 136.6E
   MAX SUSTAINED WINDS - 055 KT, GUSTS 070 KT
   WIND RADII VALID OVER OPEN WATER ONLY
   SUBTROPICAL
   RADIUS OF 050 KT WINDS - 040 NM NORTHEAST QUADRANT
                            020 NM SOUTHEAST QUADRANT
                            010 NM SOUTHWEST QUADRANT
                            020 NM NORTHWEST QUADRANT
   RADIUS OF 034 KT WINDS - 220 NM NORTHEAST QUADRANT
                            100 NM SOUTHEAST QUADRANT
                            080 NM SOUTHWEST QUADRANT
                            140 NM NORTHWEST QUADRANT
   VECTOR TO 24 HR POSIT: 025 DEG/ 11 KTS
    ---
   24 HRS, VALID AT:
   231200Z --- 32.9N 137.6E
   MAX SUSTAINED WINDS - 050 KT, GUSTS 065 KT
   WIND RADII VALID OVER OPEN WATER ONLY
   BECOMING EXTRATROPICAL
   RADIUS OF 050 KT WINDS - 060 NM NORTHEAST QUADRANT
                            020 NM SOUTHEAST QUADRANT
                            030 NM SOUTHWEST QUADRANT
                            030 NM NORTHWEST QUADRANT
   RADIUS OF 034 KT WINDS - 190 NM NORTHEAST QUADRANT
                            100 NM SOUTHEAST QUADRANT
                            090 NM SOUTHWEST QUADRANT
                            120 NM NORTHWEST QUADRANT
   VECTOR TO 36 HR POSIT: 035 DEG/ 12 KTS
    ---
   36 HRS, VALID AT:
   240000Z --- 34.8N 139.2E
   MAX SUSTAINED WINDS - 050 KT, GUSTS 065 KT
   WIND RADII VALID OVER OPEN WATER ONLY
   EXTRATROPICAL
   RADIUS OF 050 KT WINDS - 050 NM NORTHEAST QUADRANT
                            020 NM SOUTHEAST QUADRANT
                            030 NM SOUTHWEST QUADRANT
                            050 NM NORTHWEST QUADRANT
   RADIUS OF 034 KT WINDS - 210 NM NORTHEAST QUADRANT
                            100 NM SOUTHEAST QUADRANT
                            080 NM SOUTHWEST QUADRANT
                            150 NM NORTHWEST QUADRANT
   VECTOR TO 48 HR POSIT: 035 DEG/ 15 KTS
    ---
   EXTENDED OUTLOOK:
   48 HRS, VALID AT:
   241200Z --- 37.2N 141.4E
   MAX SUSTAINED WINDS - 050 KT, GUSTS 065 KT
   WIND RADII VALID OVER OPEN WATER ONLY
   EXTRATROPICAL
   RADIUS OF 050 KT WINDS - 040 NM NORTHEAST QUADRANT
                            020 NM SOUTHEAST QUADRANT
                            010 NM SOUTHWEST QUADRANT
                            040 NM NORTHWEST QUADRANT
   RADIUS OF 034 KT WINDS - 230 NM NORTHEAST QUADRANT
                            090 NM SOUTHEAST QUADRANT
                            080 NM SOUTHWEST QUADRANT
                            180 NM NORTHWEST QUADRANT
   VECTOR TO 72 HR POSIT: 030 DEG/ 15 KTS
    ---
   72 HRS, VALID AT:
   251200Z --- 42.1N 145.5E
   MAX SUSTAINED WINDS - 045 KT, GUSTS 055 KT
   WIND RADII VALID OVER OPEN WATER ONLY
   EXTRATROPICAL
   RADIUS OF 034 KT WINDS - 300 NM NORTHEAST QUADRANT
                            120 NM SOUTHEAST QUADRANT
                            140 NM SOUTHWEST QUADRANT
                            200 NM NORTHWEST QUADRANT
    ---
REMARKS:
221500Z POSITION NEAR 29.5N 136.1E.
22SEP20. TROPICAL STORM 14W (DOLPHIN), LOCATED APPROXIMATELY 419
NM SOUTH-SOUTHWEST OF YOKOSUKA, JAPAN, HAS TRACKED NORTH-
NORTHEASTWARD AT 11 KNOTS OVER THE PAST SIX HOURS.
MAXIMUM SIGNIFICANT WAVE HEIGHT AT 221200Z IS 21 FEET. NEXT
WARNINGS AT 222100Z, 230300Z, 230900Z AND 231500Z.
//
1420091806 212N1392E  15
1420091812 211N1386E  15
1420091818 211N1373E  15
1420091900 209N1364E  15
1420091906 215N1353E  15
1420091912 222N1348E  15
1420091918 228N1345E  15
1420092000 232N1342E  20
1420092006 236N1341E  20
1420092012 240N1342E  35
1420092018 244N1344E  35
1420092100 248N1346E  45
1420092106 253N1348E  45
1420092112 257N1350E  45
1420092118 264N1351E  50
1420092200 271N1353E  55
1420092200 271N1353E  55
1420092206 280N1356E  55
1420092206 280N1356E  55
1420092212 291N1359E  55
1420092212 291N1359E  55
NNNN

Satellite Imagery

Satellite Animations

NHC Forecast Track (Tropical Storm LOWELL)
Tropical Storm LOWELL Forecast Track (National Hurricane Center)
Tropical Depression 06E Storm-Centered Infrared
Tropical Depression 06E Storm-Centered Enhanced Infrared
Tropical Depression 06E Storm-Centered Visible

Summary for Tropical Storm Lowell (EP2/EP172020)

...LOWELL STRENGTHENS SLIGHTLY... As of 8:00 AM PDT Tue Sep 22 the center of Lowell was located near 18.4, -116.6 with movement WNW at 13 mph. The minimum central pressure was 999 mb with maximum sustained winds of about 50 mph.

Tropical Storm Lowell Public Advisory Number 8

...LOWELL STRENGTHENS SLIGHTLY...
Location: 18.4°N 116.6°W
Max sustained: 50 mph
Moving: WNW at 13 mph
Min pressure: 999 mb

Issued at 800 AM PDT Tue Sep 22 2020

Tropical Storm Lowell Forecast Advisory Number 8

Issued at 1500 UTC TUE SEP 22 2020

Tropical Storm Lowell Forecast Discussion Number 8

Issued at 800 AM PDT Tue Sep 22 2020

Tropical Storm Lowell Wind Speed Probabilities Number 8

Issued at 1500 UTC TUE SEP 22 2020

Tropical Storm Lowell Graphics

Tropical Storm Lowell 5-Day Uncertainty Track Image
5-Day Uncertainty Track last updated Tue, 22 Sep 2020 14:46:01 GMT

Tropical Storm Lowell 34-Knot Wind Speed Probabilities
Wind Speed Probabilities last updated Tue, 22 Sep 2020 15:47:58 GMT

Tropical Storm Lowell 5-Day Track, Uncertainty Cone, Warnings (.shp)

GIS Data last updated Tue, 22 Sep 2020 14:46:37 GMT

Tropical Storm Lowell Best Track Information (.shp)

GIS Data last updated Tue, 22 Sep 2020 14:46:37 GMT

Tropical Storm Lowell Best Track Information (.kmz)

GIS Data last updated Tue, 22 Sep 2020 14:46:37 GMT

Tropical Storm Lowell Forecast Information (.shp)

GIS Data last updated Tue, 22 Sep 2020 14:46:37 GMT

Tropical Storm Lowell Information by ATCF XML Prototype

Issued at Tue, 22 Sep 2020 14:43:03 GMT. This is only a prototype and the file format may change without notice.
SpaghettiTropical Storm LOWELL Spaghetti Models (UWM)
SpaghettiTropical Storm LOWELL Spaghetti Models (SFWMD)

Satellite Imagery

Satellite Animations

What Is a Hurricane?

A hurricane (or typhoon, or severe tropical cyclone), the strongest storm on Earth, is a cyclonic (rotary) storm that derives its energy from cloud formation and rainfall, unlike frontal cyclones that derive their power from a temperature gradient.

A hurricane begins as a tropical depression with a sustained wind speed of less than 39 mph (35 knots; 63 km/hr). As the system strengthens, it becomes a tropical storm with winds from 39 to 73 mph (35-63 knots; 63-118 km/hr). Tropical storms are named in the Atlantic, East, Central and Northwest Pacific, in the South Indian Ocean, and in the Arabian Sea. When the winds are sustained (based on a one-minute average) at 74 mph (64 knots; 119 km/hr), the storm becomes: In the Atlantic Ocean, East Pacific, Central Pacific (east of the International Dateline) and Southeast Pacific (east of 160°E) a Hurricane; in the Northwest Pacific (west of the International Dateline) a Typhoon; in the Southwest Pacific (west of 160°E) and Southeast Indian Ocean (east of 90°E) a Severe Tropical Cyclone; in the North Indian Ocean a Severe Cyclonic Storm; and in the Southwest Indian Ocean (west of 90°E) a Tropical Cyclone.

The Saffir-Simpson Hurricane Scale

Category 1 – 64-82 knots (74-95 mph; 119-153 km/h). Damage is limited to foliage, signage, unanchored boats and mobile homes. There is no significant damage to buildings. The main threat to life and property may be flooding from heavy rains.

Category 2 – 83-95 knots (96-110 mph; 154-177 km/h). Roof damage to buildings. Doors and windows damaged. Mobile homes severely damaged. Piers damaged by storm surge. Some trees blown down, more extensive limb damage.

Category 3 – 96-112 knots (111-129 mph; 178-208 km/h). This is the first step of Major Hurricane. Landfalling major hurricanes have their names retired from the list of available hurricane names. For example, after Hurricane Charley made landfall in Florida as a Category 4 hurricane, its name was retired. In the future, when someone says “Hurricane Charley”, there will be no doubt which storm is meant. Category 3 storms cause structural damage to some buildings. Mobile homes are completely destroyed. Roof damage is common. Storm surge begins to cause significant damage in beaches and harbors, with small buildings destroyed.

Category 4 – 113-136 knots (130-156 mph; 209-251 km/h). Structural failure of some buildings. Complete roof failures on many buildings. Extreme storm surge damage and flooding. Severe coastal erosion, with permanent changes to the coastal landscape not unheard of. Hurricane force winds extend well inland.

Category 5 – 137+ knots (157+ mph; 262+ km/h). Complete roof failure on most buildings. Many buildings destroyed, or structurally damaged beyond repair. Catastrophic storm surge damage. All Category 5 hurricanes’ names are retired, regardless whether they ever make landfall. In the Northwest Pacific, a typhoon that reaches 150 mph (241 km/hr) is called a Super Typhoon. The damage caused by a super typhoon is equivalent to a strong Category 4 or Category 5 hurricane, depending on how strong the typhoon is. Because conditions in the Northwest Pacific favor storm formation throughout most of the year, super typhoons are much more common than Category 5 hurricanes. Every year the Northwest Pacific sees several super typhoons, while the Atlantic might see one Category 5 every few years.

SAFFIR-SIMPSON SCALE
CategoryKnotsMPHKM/HDamage
164-8274-95119-153Minimal
283-9596-110154-177Moderate
396-112111-129178-208Extensive
4113-136130-156209-251Extreme
Super Typhoon130+150+241+Catastrophic
5137+157+262+Catastrophic

Storm Surge

Historically, storm surge is the primary killer in hurricanes. The exact storm surge in any given area will be determined by how quickly the water depth increases offshore. In deep-water enviroments, such as the Hawaiian islands, storm surge will be enhanced by the rapidly decreasing ocean depth as the wind-driven surge approaches the coast. The peak storm surge is on the right-front quadrant (left-front in the Southern Hemisphere) of the eyewall at landfall, where on-shore winds are the strongest, and at the leading edge of the eyewall. Contrary to a popular myth, the storm surge is entirely wind-driven water—it is not caused by the low pressure of the eye. Another factor in the severity of the storm surge is tide. Obviously, an 18-foot storm surge at high tide is that much worse than an 18-foot surge at low tide.

Tropical Cyclone Formation

Tropical Cyclone Genesis is the technical term for the process of storm formation that leads ultimately to what are called hurricanes, typhoons, or tropical cyclones in various parts of the world.

This occurs when, in the Northern Hemisphere, the Intertropical Convergence Zone, or ITCZ, shifts northward out of the doldrums and atmospheric conditions become favorable for tropical cyclone formation after about the middle of May.

A series of low-pressure ripples develops within the ITCZ. These are known as tropical waves and progress from east to west. In the late season, they typically shift their movement toward the west-nothwest, or even northwest, after crossing 45° or 50° W longitude.

These tropical waves, ideally embedded in the deep-layer easterly flow, contain a northeast wind shift. This is typically referred to as a “convergence”, where lines of equal atmospheric pressure are pressed together between the high-pressure ridge to the north and the developing low-pressure system. The divergence that results ahead of the convergence zone gives us a notheasterly wind as the axis of the tropical wave approaches. Gusts up to 25 mph may occur. Sometimes there can be gusts to tropical storm force in stronger waves. There can be next to no weather associated with these waves, and they may pass virtually unnoticed. More typically, there are bands of disturbed weather riding the axis of the wave.

Easterly Wave
(Graphic by Robert Simmon, NASA GSFC)

When the wave passes over warmer waters (SSTs), convection and resulting rainfall are enhanced. This greater rainfall is concomitant with falling surface pressures. By the time these pressures fall to 1008mb, it is likely that the northeast wind has closed off to a southwest wind on the backside of the wave. The forward motion of the wave completes the closure on the northern side of a broad low-level center, and a tropical depression has formed.

We often hear that a tropical depression has formed, but conditions are unfavorable for further development. There are two conditions that must be present for the tropical depression to continue its development: warm SSTs (above 79° Fahrenheit/26° Celsius) and low vertical shear. A tropical cyclone derives its power from the warm waters below. In addition, a strong anticyclone directly above the low-level inflow is favorable. As a tropical cyclone is pulling in warm, moist air at the surface, it must also evacuate this inbound flow aloft. This occurs in the upper levels of the atmosphere, where high pressure facilitates the development of the cyclone by evacuating the flow from the lower levels of the cyclone. Every powerful hurricane has an equally powerful high pressure system over it. At the surface, the air spirals inward in a counter-clockwise direction, rises in the developing center, and spirals out at the top in a clockwise direction. In the Southern Hemisphere, it is reversed: clockwise inbound, counterclockwise outbound.

If the upper-level high pressure system does not develop over our cyclone, it means there is shear instead. This is a strong jet of air that is blowing directly over the cyclone, ripping the tops off the deep convection. This has the effect of breaking down the whole mechanism. This is known as vertical shear. Vertical shear usually comes from a westerly direction, and can occur if the cyclone is located in an unfavorable position near a cold front or upper-level low pressure system. Another factor that can interfere with the development of a tropical cyclone is subsidence. Subsidence is the sinking of air. This happens on the edge of an upper-level high-pressure system. Subsiding air has the effect of suppressing thunderstorm formation. This also is why a tropical storm that tries to form near an established hurricane has a very difficult time—the cyclone is on the edge of the hurricane’s upper-level outflow, and may have to contend with both subsidence and shear. The effect of shear on a cyclone can range from a failure to thrive to catastrophic collapse of the tropical cyclone’s support structure.

Tropical cyclones have the low-level circulation and the upper-level circulation (outflow), whose formation was discussed above. There is also a mid-level circulation. The mid-level circulation is similar in structure to the low-level circulation, and is critical to the survival of a tropical cyclone that is passing over land. The lowel-level circulation can be severely disrupted, or even dissipated, by interaction with land, especially mountainous terrain. If the mid-level circulation remains intact, the cyclone can regenerate rapidly when it reemerges over water, providing other factors are favorable.

Hurricane Structure
(Image courtesy NOAA)

Assuming all the ingredients are in place—warm SSTs, upper-level high pressure, and falling surface pressures—the cyclone will develop and reach a point of rapid intensification. It is one of nature’s perfect machines. As warm waters feed the convection swirling around the center, heavy rainfall lowers surface pressures, high pressure aloft evacuates the inflow, which intensifies the inflow of warm, moist air, which in turn increases the rainfall and brings about a more rapid fall in central pressure.

Eye formation begins when a tropical storm reaches approximately 65mph, provided conditions are favorable for strengthening to continue. The eyewall begins to make its appearance, usually on the eastern (Northern Hemisphere) edge of the center. As the system becomes better organized and stronger, the center contracts from about 200 miles across to roughly 90 miles at this stage. An increase in rotational velocity accompanies the smaller, more defined center. The inflow is spiralling in ever faster as it is evacuated up through the developing eyewall and out by the high pressure outflow structure. The eye begins to appear as a clear spot in the center, as the air here is sinking. The eyewall creates subsidence that not only helps clear the eye, but can also produce a feature known as the “moat”, which is an area of relatively weak convection outside the core of the tropical cyclone. The combination of eye and moat can make the storm’s core look like a doughnut. The eye can have a diameter anywhere from 10 to 40 miles across.

Tropical cyclones can exhibit a great deal of durabilty provided that the upper level support remains and the southerly (Northern Hemisphere) inflow is present. The worst thing that can happen is for this southerly (or equatorward) inflow to get cut off. Here are some examples: In 1998, Hurricane Mitch developed into a supermassive Category 5 hurricane. Nevertheless weakening began when the center moved to a position directly north of Honduras, cutting off the southerly inflow, even though the eye was still over a hundred miles off shore. Later, Mitch maintained its mid-level core against all odds over the mountains of Central America because he was able to advect moisture from the East Pacific. Reintensification to tropical storm strength was almost immediate after reaching the Bay of Campeche. Mitch never dissipated. In 1988 Gilbert hit the Yucatan near Cancún as a Category 5 hurricane. The Yucatan peninsula, though flat, extended far enough south through the critical southerly inflow zone that Gilbert never recovered, even after moving over the open waters of the western Gulf of Mexico. Contrast this with the northern Gulf coast and numerous examples from Camille to Elena and beyond, where the proximity of the eye to land is not necessarily a weakening factor, although the relatively extensive shelf water can sometimes be an inhibiting factor, if a slow-moving storm generates enough upwelling. A recent Southern Hemisphere example of this is Severe Tropical Cyclone Monica, which developed into a “super cyclone” just north of Australia. The northerly (equatorward) inflow over the Arafura Sea fueled this system.

What are the factors that contribute to the decay of a tropical cyclone? They are Upwelling, Entraining dry air, Moving over cool waters, Exposure to upper-level westerlies, and finally Landfall.

Upwelling. When a hurricane stalls, its movement is has fallen below 5mph, or its movement is erratic over a small area, the wave action caused by the strong surface winds churns the ocean surface and produces upwelling. This has the effect of cooling the temperature of the sea surface over an area 200 to 300 miles across. The result is weakening. It is possible for a hurricane to stall in one area long enough that it dissipates. In 2004, Hurricane Frances stalled off the southeast Florida coast long enough that the core of the hurricane collapsed. Frances eventually made landfall as a Category 1 hurricane, instead of the earlier expected Category 3.

Entraining dry air. Sometimes, during the peak season, when tropical cyclones approach contintental land masses, they may entrain dry air as part of their interaction with frontal troughs that carry cool, dry air behind them. It is one of the ironies of the Atlantic Hurricane Season that, just when things get going, it’s already September and the strength and frequency of cold fronts is increasing. These fronts interfere by deflecting the hurricane or injecting dry air into the circulation, or both. The dry air kills the convective masses that drive the hurricane’s engine. If the dry air entrains deeply enough, it can cause significant weakening.

Moving over cool water. Similar to upwelling, when a tropical cyclone moves over cool water (below 77° Fahrenheit/25° Celsius), it begins to weaken. Eventually this causes dissipation, particularly in the East Pacific. In the Atlantic, if the storm is caught in the mid-latitude westerlies and begins to recurve to the northeast, it generally becomes an extratropical storm by the time it has reached about 45° W. This is the so-called “graveyard” of Atlantic hurricanes. The storm becomes extratropical when it has transitioned to a cold-core, baroclinically driven system, and eventually becomes a gale in the north Atlantic, or is absorbed by a large gale. There have been times when a hurricane passes north of the Azores and hits the British Isles as a Force 8 or stronger gale, having maintained a recognizable inner core.

Exposure to upper-level westerlies. It happens that the ridge of high pressure that keeps the hurricane heading toward the west frequently breaks down. In the Atlantic Ocean, this may result in strong upper-level westerlies diving down and impinging on the northern edge of the hurricane’s upper-level support structure. Poleward outflow is restricted. A hurricane can still thrive when outflow is restricted in one quadrant. If the forces responsible for the constricted outflow bear down too strongly, the hurricane undergoes acute shearing. As outlined above, this can be devastating.

After landfall. Tropical cyclones cannot survive over land, once their access to warm SST is removed. A powerful hurricane, such as Hugo, which hit Charleston, S.C. in 1989, can project life-threatening hurricane force winds over two hundred miles inland. As the storm progresses inland, it can dump a huge amount of rain—sometimes measured in feet. The storm may evolve into a frontal cyclone that continues to cause widespread damage. The best example of this is Hurricane Camille in 1969—the strongest hurricane ever to make landfall on the continental United States with winds sustained at 190 mph and gusts well exceeding 200 mph—which roared up the Mississippi Valley and eventually exited off the East Coast. Camille maintained tropical storm strength as far as Memphis, Tennessee. Most hurricanes will diminish in strength rapidly after landfall, reaching tropical depression strength by 48 to 72 hours. The main threat from the dying storm is from tornadoes and inland flooding. The right-hand quadrant of a hurricane or typhoon (in the Northern Hemisphere, left-hand in the Southern Hemisphere) is most frequently the strong side of the storm. This is because the forward motion is added to the counter-clockwise punch of the storm. Thus, the right-hand side of the hurricane contains the strong on-shore flow. This is where the maximum storm surge flooding, and the greatest potential loss of life, will be experienced. After landfall, the friction of the circulation moving over land causes a great deal of turbulence, which results in tornadoes. These are especially likely in the forward right-hand side of the storm’s path. The dying cyclone will dump many inches of rain. The lack of access to a warm sea surface results in the death of the tropical cyclone. It usually merges into a frontal trough, or dissipates.

Global Tropics Hazards and Benefits Outlook
Graphic provided by Climate Prediction Center